skip to main content


Search for: All records

Creators/Authors contains: "Schmitt, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ants communicate via an arsenal of different pheromones produced in a variety of exocrine glands. For example, ants release alarm pheromones in response to danger to alert their nestmates and to trigger behavioral alarm responses. Here we characterize the alarm pheromone and the alarm response of the clonal raider ant Ooceraea biroi, a species that is amenable to laboratory studies but for which no pheromones have been identified. During an alarm response, ants quickly become unsettled, leave their nest pile, and are sometimes initially attracted to the source of alarm, but ultimately move away from it. We find that the alarm pheromone is released from the head of the ant and identify the putative alarm pheromone as a blend of two compounds found in the head, 4-methyl-3-heptanone and 4-methyl-3-heptanol. These compounds are sufficient to induce alarm behavior alone and in combination. They elicit similar, though slightly different behavioral features of the alarm response, with 4-methyl-3-heptanone being immediately repulsive and 4-methyl-3-heptanol being initially attractive before causing ants to move away. The behavioral response to these compounds in combination is dose-dependent, with ants becoming unsettled and attracted to the source of alarm pheromone at low concentrations and repulsed at high concentrations. While 4-methyl-3-heptanone and 4-methyl-3-heptanol are known alarm pheromones in other more distantly related ant species, this is the first report of the chemical identity of a pheromone inO. biroi,and the first alarm pheromone identified in the genusOoceraea. Identification of a pheromone that triggers a robust, consistent, and conserved behavior, like the alarm pheromone, provides an avenue to dissect the behavioral and neuronal mechanisms underpinning chemical communication.

     
    more » « less
  2. Abstract

    Titanium dioxide (TiO2) has been used in numerous paintings since its creation in the early 1920s. However, due to this relatively recent adoption by the art world, we have limited knowledge about the nature and risk of degradation in museum environments. This study expands on the existing understanding of TiO2facilitated degradation of linseed oil, by examining the effect of visible light and crystallographic phase (either anatase or rutile) on the reactivity of TiO2. The present approach is based on a combination of experimental chemical characterization with computational calculation through Density Functional Theory (DFT) modeling of the TiO2-oil system. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FT-IR) enabled the identification of characteristic degradation products during UV and visible light aging of both rutile and anatase based paints in comparison to BaSO4and linseed oil controls. In addition, cratering and cracking of the paint surface in TiO2based paints, aged under visible and UV–vis illumination, were observed through Scanning Electron Microscopy (SEM). Finally, Density Functional Theory (DFT) modeling of interactions between anatase TiO2and oleic acid, a fatty acid component of linseed oil, to form a charge transfer complex explains one possible mechanism for the visible light activity observed in artificial aging. Visible light excitation of this complex sensitizes TiO2by injecting an electron into the conduction band of TiO2to generate reactive oxygen species and subsequent degradation of the oil binder by various mechanisms (e.g., formation of an oleic acid cation radical and other oxidation products).

    Graphical Abstract

     
    more » « less
  3. Abstract

    A new approach to fused helicenes is reported, where varied substituents are readily incorporated in the extended aromatic frame. From the alkynyl precursor, the final helical compounds are obtained under mild conditions in a two‐step process, in which the final C−C bond is formed via a photochemical cyclization/ dehydroiodination sequence. The distortion of the π‐system from planarity leads to unusual packing in the solid state. Computational analysis reveals that substituent incorporation perturbs geometries and electronic structures of these nonplanar aromatics.

     
    more » « less